No images? Click here

 

Wrap up of 2021

Dear customer,

Let us celebrate the successes of our research customers in 2021.

There are over 35 publications that reference the use of ICT International products by scientists in their research. Topics ranged from the drought tolerance of Oak Trees, to LoRaWAN Aquaculture monitoring networks.

We've compiled a reference list for the SFM1 Sap Flow Meter, PSY1 Psychrometer and MP406 Soil Moisture Sensor which highlights the versatility of these instruments.

 
 

Highlighted Publications

 
 

With the adoption of Internet of Things technologies by ICT International, the SFM1 has become the SFM1x and is now an IoT connected device.

SFM1x installed in an orchard

The SFM1 Sap Flow Meter and PSY1 Psychrometer have been used in many drought tolerance experiments:

Früchtenicht, E., Bock, J., Feucht, V., & Brüggemann, W. (2021). Reactions of three European oak species (Q. robur, Q. petraea and Q. ilex) to repetitive summer drought in sandy soil. Trees, Forests and People, 5, 100093. https://doi.org/10.1016/j.tfp.2021.100093

Nolan, R. H., Gauthey, A., Losso, A., Medlyn, B. E., Smith, R., Chhajed, S. S., Fuller, K., Song, M., Li, X., Beaumont, L. J., Boer, M. M., Wright, I. J., & Choat, B. (2021). Hydraulic failure and tree size linked with canopy die-back in eucalypt forest during extreme drought. New Phytologist, 230(4), 1354–1365. https://doi.org/10.1111/nph.17298

The MP406 range of Soil Moisture sensors continue to be widely used in many research scenarios. A versatile sensor, the MP406 is widely used for long term installations (and is available with IoT connectivity as the SNiP-MP4), as well as a portable solution. Both are used for research, as can be seen in the articles below.

 

Researchers, from the New South Wales Department of Primary Industries, deployed a LoRaWAN connected network of aquaculture monitoring sensors. ICT International supplied the Node that enabled the connection of multiple sensors for subsequent data transmission to The Things Network. From this, ICT International have also developed the ICT International Data Buoy for use in aquaculture.

Bates, H., Pierce, M., & Benter, A. (2021). Real-Time Environmental Monitoring for Aquaculture Using a LoRaWAN-Based IoT Sensor Network. Sensors, 21(23), 7963. https://doi.org/10.3390/s21237963

NSW DPI Buoy with ICT International S-Node
 
 

Sap Flow Publications

 
 

Ali, A., Al-Mulla, Y. A., Charabi, Y., Al-Wardy, M., & Al-Rawas, G. (2021). Use of multispectral and thermal satellite imagery to determine crop water requirements using SEBAL, METRIC, and SWAP models in hot and hyper-arid Oman. Arabian Journal of Geosciences, 14(7), 1–21. https://doi.org/10.1007/s12517-021-06948-0

Balugani, E. (2021). Partitioning of subsurface evaporation in water limited environments [University of Twente]. https://doi.org/10.3990/1.9789036552127

Espinosa, C. M. O., Salazar, J. C. S., Churio, J. O. R., & Mora, D. S. (2021). Los sistemas agroforestales y la incidencia sobre el estatus hídrico en árboles de cacao. Biotecnología en el Sector Agropecuario y Agroindustrial, 19(1), 256–267. https://doi.org/10.18684/bsaa.v19.n1.2021.1623

Früchtenicht, E., Bock, J., Feucht, V., & Brüggemann, W. (2021). Reactions of three European oak species (Q. robur, Q. petraea and Q. ilex) to repetitive summer drought in sandy soil. Trees, Forests and People, 5, 100093. https://doi.org/10.1016/j.tfp.2021.100093

Liu, Y., Nadezhdina, N., Di, N., Ma, X., Liu, J., Zou, S., Xi, B., & Clothier, B. (2021). An undiscovered facet of hydraulic redistribution driven by evaporation—A study from a Populus tomentosa plantation. Plant Physiology, 186(1), 361–372. https://doi.org/10.1093/plphys/kiab036

Matsunaga, H., Matsuo, N., Nakai, T., Yoshifuji, N., Tanaka, N., Tanaka, K., & Tantasirin, C. (2021). Absorption and emission of water vapor from the bark of teak (Tectona grandis), a deciduous tree, in a tropical region during the dry season. Hydrological Research Letters, 15(3), 58–63. https://doi.org/10.3178/hrl.15.58

Miranda, M. T., Da Silva, S. F., Silveira, N. M., Pereira, L., Machado, E. C., & Ribeiro, R. V. (2021). Root Osmotic Adjustment and Stomatal Control of Leaf Gas Exchange are Dependent on Citrus Rootstocks Under Water Deficit. Journal of Plant Growth Regulation, 40(1), 11–19. https://doi.org/10.1007/s00344-020-10069-5

Schoppach, R., Chun, K. P., He, Q., Fabiani, G., & Klaus, J. (2021). Species-specific control of DBH and landscape characteristics on tree-to-tree variability of sap velocity. Agricultural and Forest Meteorology, 307, 108533. https://doi.org/10.1016/j.agrformet.2021.108533

Treydte, K., Lehmann, M. M., Wyczesany, T., & Pfautsch, S. (2021). Radial and axial water movement in adult trees recorded by stable isotope tracing. Tree Physiology, 41(12), 2248–2261. https://doi.org/10.1093/treephys/tpab080

Wallace, T. A., Gehrig, S. L., Doody, T. M., Davies, M. J., Walsh, R., Fulton, C., Cullen, R., & Nolan, M. (2021). A multiple-lines-of-evidence approach for prioritising environmental watering of wetland and floodplain trees. Ecohydrology, 14(3), e2272. https://doi.org/10.1002/eco.2272

 
 

Psychrometer Publications

 
 

Amrutha, S., Parveen, A. B. M., Muthupandi, M., Vishnu, K., Bisht, S. S., Sivakumar, V., & Ghosh Dasgupta, M. (2021). Characterization of Eucalyptus camaldulensis clones with contrasting response to short-term water stress response. Acta Physiologiae Plantarum, 43(1), 14. https://doi.org/10.1007/s11738-020-03175-0

Avila, R. T., Cardoso, A. A., Batz, T. A., Kane, C. N., DaMatta, F. M., & McAdam, S. A. M. (2021). Limited plasticity in embolism resistance in response to light in leaves and stems in species with considerable vulnerability segmentation. Physiologia Plantarum, n/a(n/a). https://doi.org/10.1111/ppl.13450

Benettin, P., Nehemy, M. F., Asadollahi, M., Pratt, D., Bensimon, M., McDonnell, J. J., & Rinaldo, A. (2021). Tracing and Closing the Water Balance in a Vegetated Lysimeter. Water Resources Research, 57(4), e2020WR029049. https://doi.org/10.1029/2020WR029049

Bourbia, I., Pritzkow, C., & Brodribb, T. J. (2021). Herb and conifer roots show similar high sensitivity to water deficit. Plant Physiology, kiab207. https://doi.org/10.1093/plphys/kiab207

Chen, Y.-J., Maenpuen, P., Zhang, Y.-J., Barai, K., Katabuchi, M., Gao, H., Kaewkamol, S., Tao, L.-B., & Zhang, J.-L. (2021). Quantifying vulnerability to embolism in tropical trees and lianas using five methods: Can discrepancies be explained by xylem structural traits? New Phytologist, 229(2), 805–819. https://doi.org/10.1111/nph.16927

Dainese, R., & Tarantino, A. (2021). Measurement of plant xylem water pressure using the high-capacity tensiometer and implications for the modelling of soil–atmosphere interaction. Géotechnique, 71(5), 441–454. https://doi.org/10.1680/jgeot.19.P.153

Epron, D., Kamakura, M., Azuma, W., Dannoura, M., & Kosugi, Y. (2021). Diurnal variations in the thickness of the inner bark of tree trunks in relation to xylem water potential and phloem turgor. Plant-Environment Interactions, 2(3), 112–124. https://doi.org/10.1002/pei3.10045

Espinosa, C. M. O., Salazar, J. C. S., Churio, J. O. R., & Mora, D. S. (2021). Los sistemas agroforestales y la incidencia sobre el estatus hídrico en árboles de cacao. Biotecnología en el Sector Agropecuario y Agroindustrial, 19(1), 256–267. https://doi.org/10.18684/bsaa.v19.n1.2021.1623

Guan, X., Pereira, L., McAdam, S. A. M., Cao, K.-F., & Jansen, S. (2021). No gas source, no problem: Proximity to pre-existing embolism and segmentation affect embolism spreading in angiosperm xylem by gas diffusion. Plant, Cell & Environment, 44(5), 1329–1345. https://doi.org/10.1111/pce.14016

Hallmark, A. J., Maurer, G. E., Pangle, R. E., & Litvak, M. E. (2021). Watching plants’ dance: Movements of live and dead branches linked to atmospheric water demand. Ecosphere, 12(8), e03705. https://doi.org/10.1002/ecs2.3705

Harrison Day, B. L., Carins-Murphy, M. R., & Brodribb, T. J. (2021). Reproductive water supply is prioritized during drought in tomato. Plant, Cell & Environment, n/a(n/a). https://doi.org/10.1111/pce.14206

Holtzman, N. M., Anderegg, L. D. L., Kraatz, S., Mavrovic, A., Sonnentag, O., Pappas, C., Cosh, M. H., Langlois, A., Lakhankar, T., Tesser, D., Steiner, N., Colliander, A., Roy, A., & Konings, A. G. (2021). L-band vegetation optical depth as an indicator of plant water potential in a temperate deciduous forest stand. Biogeosciences, 18(2), 739–753. https://doi.org/10.5194/bg-18-739-2021

Mantova, M., Menezes-Silva, P. E., Badel, E., Cochard, H., & Torres-Ruiz, J. M. (2021). The interplay of hydraulic failure and cell vitality explains tree capacity to recover from drought. Physiologia Plantarum, 172(1), 247–257. https://doi.org/10.1111/ppl.13331

Nehemy, M. F., Benettin, P., Asadollahi, M., Pratt, D., Rinaldo, A., & McDonnell, J. J. (2021). Tree water deficit and dynamic source water partitioning. Hydrological Processes, 35(1), e14004. https://doi.org/10.1002/hyp.14004

Nolan, R. H., Gauthey, A., Losso, A., Medlyn, B. E., Smith, R., Chhajed, S. S., Fuller, K., Song, M., Li, X., Beaumont, L. J., Boer, M. M., Wright, I. J., & Choat, B. (2021). Hydraulic failure and tree size linked with canopy die-back in eucalypt forest during extreme drought. New Phytologist, 230(4), 1354–1365. https://doi.org/10.1111/nph.17298

Nuixe, M., Traoré, A. S., Blystone, S., Bonny, J.-M., Falcimagne, R., Pagès, G., & Picon-Cochard, C. (2021). Circadian Variation of Root Water Status in Three Herbaceous Species Assessed by Portable NMR. Plants, 10(4), 782. https://doi.org/10.3390/plants10040782

Prats, K. A., & Brodersen, C. R. (2021). Desiccation and rehydration dynamics in the epiphytic resurrection fern Pleopeltis polypodioides. Plant Physiology, 187(3), 1501–1518. https://doi.org/10.1093/plphys/kiab361

Pritzkow, C., Szota, C., Williamson, V., & Arndt, S. K. (2021). Previous drought exposure leads to greater drought resistance in eucalypts through changes in morphology rather than physiology. Tree Physiology, tpaa176. https://doi.org/10.1093/treephys/tpaa176

Soland, K. R., Kerhoulas, L. P., Kerhoulas, N. J., & Teraoka, J. R. (2021). Second-growth redwood forest responses to restoration treatments. Forest Ecology and Management, 496, 119370. https://doi.org/10.1016/j.foreco.2021.119370

Suárez, J. C., Casanoves, F., Bieng, M. A. N., Melgarejo, L. M., Di Rienzo, J. A., & Armas, C. (2021). Prediction model for sap flow in cacao trees under different radiation intensities in the western Colombian Amazon. Scientific Reports, 11(1), 10512. https://doi.org/10.1038/s41598-021-89876-z

 
 

MP406 Publications

 
 

Halli, H. M., Angadi, S., Kumar, A., Govindasamy, P., Madar, R., Baskar V, D. C., Elansary, H. O., Tamam, N., Abdelbacki, A. M. M., & Abdelmohsen, S. A. M. (2021). Assessment of Planting Method and Deficit Irrigation Impacts on Physio-Morphology, Grain Yield and Water Use Efficiency of Maize (Zea mays L.) on Vertisols of Semi-Arid Tropics. Plants, 10(6), 1094. https://doi.org/10.3390/plants10061094

Halli, H. M., Angadi, S., Kumar, A., Govindasamy, P., Madar, R., El-Ansary, D. O., Rashwan, M. A., Abdelmohsen, S. A. M., Abdelbacki, A. M. M., Mahmoud, E. A., & Elansary, H. O. (2021). Influence of Planting and Irrigation Levels as Physical Methods on Maize Root Morphological Traits, Grain Yield and Water Productivity in Semi-Arid Region. Agronomy, 11(2), 294. https://doi.org/10.3390/agronomy11020294

Kannan P., Paramasivan M., Marimuthu S., Swaminathan C., & Bose, J. (2021). Applying both biochar and phosphobacteria enhances Vigna mungo L. growth and yield in acid soils by increasing soil pH, moisture content, microbial growth and P availability. Agriculture, Ecosystems & Environment, 308, 107258. https://doi.org/10.1016/j.agee.2020.107258

Malambane, G., Batlang, U., Ramolekwa, K., Tsujimoto, H., & Akashi, K. (2021). Growth chamber and field evaluation of physiological factors of two watermelon genotypes. Plant Stress, 2, 100017. https://doi.org/10.1016/j.stress.2021.100017

Udukumburage, R. S., Gallage, C., & Dawes, L. (2021). An instrumented large soil column to investigate climatic ground interaction. International Journal of Physical Modelling in Geotechnics, 21(2), 55–71. https://doi.org/10.1680/jphmg.19.00007

Vance, W. H., Bell, R. W., Johansen, C., Haque, M. E., Musa, A. M., & Shahidullah, A. K. M. (2021). Soil disturbance levels, soil water content and the establishment of rainfed chickpea: Mechanised seeding options for smallholder farms in north-west Bangladesh. Journal of Agronomy and Crop Science, 207(2), 208–223. https://doi.org/10.1111/jac.12455

Xu, X., Duan, C., Wu, H., Luo, X., & Han, L. (2021). Effects of changes in throughfall on soil GHG fluxes under a mature temperate forest, northeastern China. Journal of Environmental Management, 294, 112950. https://doi.org/10.1016/j.jenvman.2021.112950

 
WebsiteLinkedInFacebook
 

ICT International research, design products and solutions, manufacture, market, and sale of specialised plant, soil, and environmental sensors and monitoring solutions. Import and distribution of associated sensors and scientific instruments.

 
 
  Forward 

ICT International,
211 Mann Street,
Armidale,
NSW, 2350,
Australia

Preferences  |  Unsubscribe